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Abstract 

Molecular dynamics has been used to estimate the 
properties of a two-dimensional crystal exhibiting a 
second-order soft-mode phase transition. Using a 
vibrational potential for the crystal which is tem- 
perature independent, the essential features observed 
experimentally in the coherent scattering from 
analogous real systems are reproduced in the com- 
puter simulation. The potential consists of an effective 
one-particle component with multiple minima and a 
harmonic nearest-neighbour coupling component. It 
is emphasized that the coupling component is essen- 
tial to reproduce correctly the qualitative features not 
only of the diffuse scattering, but also of the mean- 
square displacements as a function of temperature. 
The condition for appearance of a cusp at Tc in the 
mean-square displacement versus temperature curve 
is discussed and the formation of superlattice peaks 
in the diffuse scattering is demonstrated. 

Introduction 

Crystallographic studies of structural phase transi- 
tions can provide information on the nature of the 
phase change through measurements of: 

(a) the structure of the high- and low-temperature 
phases (with associated measurement of order par- 
ameters); 

(b) the temperature factors as a function of tem- 
perature; and 

(c) the diffuse scattering as a function of tem- 
perature. 

The crystallographic literature contains many 
examples of such experimental studies, especially in 
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the case of structural work. As experimental tech- 
niques become more efficient and data more reliable, 
it is apparent that more information could potentially 
be extracted from detailed measurements than is cus- 
tomary at present. For example, diffuse scattering can 
provide information on the pair-displacement corre- 
lations, and ultimately the pair-correlation function, 
and the temperature factors can help to establish 
whether soft modes are present and which atoms are 
involved. 

Recognizing that a need exists for parallel theoreti- 
cal studies of structural phase transitions, we aim in 
the present work to calculate crystallographic proper- 
ties [namely, mean-square displacements (MSD's) 
and coherent scattering distributions] for a model 
system possessing a second-order soft-mode struc- 
tural phase transition. The work follows on from 
calculations on a one-dimensional system (a chain) 
of coupled anharmonically vibrating atoms. MSD's, 
one-particle probability densities, effective one- 
particle potentials and fourth-order cumulants of the 
displacements were calculated (Mair, 1983a, b) as 
well as pair-displacement correlations (Johnson & 
Mair, 1985) and disorder diffuse scattering (Mair, 
1984a). The present model is an extension of the 
system to two dimensions and so ordering can occur 
at a finite temperature, To. Unlike the one- 
dimensional case, which could be treated in a semi- 
analytical way, the two-dimensional calculations are 
made with the technique of molecular dynamics. 

The details of the model and numerical methods 
have already been reported (Mair, 1986) so only an 
outline of these will be presented. Mair (1986) also 
gives results on MSD's, some of which are repeated 
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here together with new MSD results. A subsequent 
paper (Mair, 1987) reports the temperature depen- 
dence of the pair-displacement correlations and the 
frequency spectrum of the order-parameter correla- 
tion function, showing the mode softening and central 
peak formation. 

While the model system reproduces the essential 
features and temperature dependence of some 
properties of soft-mode phase-transforming crystals, 
it is not suitable for quantitative comparison with any 
real system. In particular, the model system is two- 
dimensional, of rather limited size, and the Hamil- 
tonian, whilst carefully chosen in some respects, still 
possesses some arbitrary features. These shortcom- 
ings in the model do not detract from the paper's 
more general aim, which is to demonstrate the power 
of a model in which explicit coupling is allowed 
between atoms and to point out some of the limita- 
tions of uncoupled models. 

Model 

The vibrational potential, ~, is written in terms of 
the displacements (Xlk, Ytk) of the atoms from high- 
temperature equilibrium positions identified by 
points (l, k) on a square lattice. Dividing • into an 
effective one-particle potential, q~,h, and a harmonic 
coupling component, (pc, we define 

~0,,h=Y. (mto2/2)[(Xtk - - d ) 2 + ( y , k  -d)2] -  (1) 
lk 

Although q~,,h is anharmonic, with four equivalent 
minima in the (11) and symmetry-related directions, 
it has quadratic walls. 

q~ = E {(row2/2)[ (Xlk -- Xt+tk) 2 + (Ytk -- Ytk+,) 2 
Ik 

+ (Xtk -- Xtk+l) 2 + (Ytk -- Yt+lk) 2] 

+ ( m w ~ / 2 ) [  (Xlk --  Yt+l k) 2 + (Ytk -- Xt+l k) 2 

+ (X tk -  Ytk+I) 2 + (Y t k -  Xtk+l)2]} (2) 

q~ = ~p,,h + (Pc. (3) 

With a choice of temperature-independent numeri- 
cal values for the parameters mwg=4"0, d = 0 . 1 ,  
mto 2 = 1-0, into 2 = -0.1 [model 1B of Mair (1986)], 
the potential has two deep minima in the directions 
(1 , -1)  and ( -1 ,  1). For temperatures T <  Tc, the 
atoms order themselves antiferrodistortively near 
these minima. Fig. 1 shows the high- and low- 
temperature unit cells and (schematically) the two 
deep minima near each high-temperature site. Note 
that there are two atoms in the unit cell, both of the 
same mass. 

The potential (1) has a cusp-shaped potential bar- 
rier, which might be regarded as an undesirable shape. 
Calculations have therefore been carried out for a 
modified (Pan h in which this cusping is rounded off 

by the replacement of (Ixl-d) 2 by 

a x 6 / d  4 + b x 4 / d  2 + cd 2 for Ixl < d /4  

and analogously for the y component of ~0a,h. The 
choice of a=426.667,  b - - - 6 4  and c=0.708333 
ensures that (Pan h is smooth everywhere. 

All calculations are for a square crystal of N 2 atoms 
where N = 40, except for the model with the rounded 
potential barrier, for which case N - 2 0 .  The 
molecular dynamics computations were performed 
on a Cyber 205, extensive use being made of vector 
processing. 

The order parameter, given by the time-averaged 
value of Sx, where 

Sx=  N - 2 E  (--1)t+axzk (4) 
lk 

is zero for T >- Tc and follows the expected Ising-like 
behaviour for T <  Tc (Mair, 1986). Sx is the x com- 
ponent of the space-averaged shift in position of an 
atom from its high- to its low-temperature mean posi- 
tion. Sy, defined analogously to (4), is equal to - S x ,  
after averaging both components of S over time. 

The MSD's are calculated with respect to the high- 
temperature (HT) equilibrium positions of the atoms. 
However, a diffraction experiment provides MSD's 
referred to the low-temperature (LT) atomic mean 
positions if T < T o  In order to obtain MSD's referred 
to these new origins it may readily be shown that 

<X2)LT = <X2).T - S~ (5) 

and analogously for the (y2). 
In the single-scattering approximation the coherent 

scattered intensity I is given by 

I ( h ) = ~ f ( h ) f j ( h ) e x p [ 2 7 r i h . ( r i - r j ) ] .  (6) 
V 

In our calculations the scattering factors f ,  fj are 
chosen arbitrarily as the electron-scattering factors 
for silicon. Note that these electron-scattering factors 
are approximately proportional to the X-ray ones 
over the low-angle range of reciprocal space 
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Fig. 1. The high- (left diagram) and low-temperature structures 
for the model• Open and closed circles represent the two atoms 
in the unit cell. The pairs of  points are discussed in the text. 
The symmetries are cram ( T > Tc  ) and pm ( T < T c ). 
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considered. The ri, rj are the final instantaneous posi- 
tions of the 1600 atoms after a suitable number of 
time-steps in the molecular-dynamics runs. The 
numerical evaluation of the intensity was accom- 
plished by the use of discrete Fourier transforms. In 
practice, to reduce the effects of noise in the intensity 
distributions, the final intensity (I) was taken as the 
mean intensity for six separate sets of positions, corre- 
sponding to widely separated time steps. 

Results 

1. Mean-square displacements 

The MSD's are presented in Fig. 2. The results for 
the rounded potential barrier, as shown by the crosses 
in the figure, deviate only slightly from the full curve 
for the unmodified barrier. The largest deviations, as 
might be expected, are near Tc (where Tc = 0-029 in 
the scaled temperature units) and are probably a 
result of the slight lowering by rounding of the poten- 
tial barrier. We may conclude that the cusp shape for 
the barrier is of little consequence, at least for the 
MSD. A more severe change in the potential barrier 
was investigated by Mair (1986). This produced 
similar but larger deviations. 

The MSD, when referred to the high-temperature 
equilibrium positions, i.e. (X2)HT, is quite smooth for 
this second-order phase transition, Tc occurring at 
the point of inflexion. It is only through referring the 
MSD's  for T < Tc to the new origins corresponding to 
the low-temperature structure (i.e. by introducing 
(X2)LT) that the M S D  can exhibit a cusp at To 

Fig. 2 shows the same trends as experimental results 
for MSD's of soft-mode systems, at least for T >  Tc 
where most detailed measurements have been made. 
[E.g. CsPbC13 and CsPbBr3 (Sakata, Harada, Cooper 
& Rouse, 1980) and KESnC16 (Mair, 1984b). See also 
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Fig. 2. The MSD as a function of scaled temperature. The full line 
is (X2)HT, the crosses giving values for the,model with the rounded 
potential barrier. The broken line is (X2)Lr of equation (5). To 
the scale of the diagram, no difference occurs in (X2)LT for the 
modified potential barrier. The MSD's are in dimensionless 
units, the displacements being expressed as fractions of the 
lattice constant. 

the results of Nelmes, Kuhs, Howard, Tibballs & 
Ryan (1985) for a narrow temperature range near Tc 
for the mildly first-order phase transitions in KH2PO4 
and KD2PO4.] Of special interest are the results of 
Lander & Brown (1985) for the average MSD of atoms 
in AuCu3 at temperatures in the vicinity of the order- 
disorder transition. Although in this case the ordering 
depends upon specific site occupancies, rather than 
small atomic displacements, the experiment gave a 
smooth average MSD through To 

Note that for an atom undergoing harmonic 
motion, the MSD is a straight line through the origin 
[see Mair (1986), where a case is given in which one 
component of an atom's motion is harmonic]. Note 
also that the straight line for T>> Tc, which is also 
observed in the experimental results for CsPbC13, 
CsPbBr3 (Sakata et al., 1980) and K2SnC16 (Mair, 
1984b), is a consequence of the quadratic walls of 
Ca,h and the harmonic nature of ¢c. A quartic poten- 
tial for Canh therefore gives an incorrect high- 
temperature behaviour for the MSD [as obtained by 
Schneider & Stoll (1980)]. 

2. Coherent scattered intensities 

The Bragg and diffuse scattering for a series of five 
temperatures (two below Tc and three above) are 
presented in Fig. 3 for the model defined by equations 
(1) to (3). The a and b axes are directed along the x 
and y axes of Fig. 1, alternative primed axes being 
introduced for convenience of interpretation. 

The symmetry of all the diffraction patterns is cmm. 
For T >  Tc, Bragg peaks occur at h '+  k ' =  2n, corre- 
sponding to the face-centred structure of the high- 
temperature cell. For T < Tc, the occurrence of super- 
lattice peaks means that Bragg peaks occur at all 
reciprocal-lattice points except for h ' =  4n with k ' =  
2 m + 1  (Ih'l, Ik'l=0, 1 and 0, 3 in the figure). These 
are special absences resulting from the two atoms in 
the unit cell having the same scattering factors. At 
T = 0-01 additional absences occur at h ' =  2n + 2, k ' =  
an (Ih'[, Ik'l = 2, 0 in Fig. 3a). This may be understood 
in terms of the coordinates of the low-temperature 
unit cell (x', y') of (0, 0) and (p, ½). As the temperature 
tends to zero, the choice of parameters for the model 

1 [see Table 2 of Mair (1986)]. means that p tends to z 
For those coordinates and indistinguishable scatter- 
ing factors for both atoms in the unit cell, the addi- 
tional absences occur. 

For T >  Tc, the two strongest diffuse peaks occur 
at (+1, 0) in the primed coordinate system. The posi- 
tions of the peaks are consistent with the wave vector 
of the soft mode driving the phase transition. This 
transverse mode occurs at wave vector qs= 
7r/a(e,+e2),  where el and e2 are unit vectors in the 
x and y directions, respectively, and a is the lattice 
constant. The mode softening is demonstrated by 
Mair (1987). 
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The intensity of the diffuse peaks decreases and 
the width increases as T is raised, but the peaks are 
still present even at quite high temperatures (Fig. 3 e). 
If we recall that the peak width is proportional to the 
inverse correlation length (e.g. Mair, 1984), this 
means that the atomic displacements remain corre- 
lated far above Tc. As T is lowered the correlation 
length increases to a large but finite value at Tc. 
Below Tc (Fig. 3b) there is still some diffuse scatter- 
ing around the superlattice peak, indicating that the 
correlation length is still increasing. This is a reflection 
of the fact that the pair-displacement correlations 
vary smoothly through Tc (Mair, 1986, 1987), 
although they increase rapidly at Tc. Only at the 
lowest temperatures (Fig. 3 a) does this diffuse scatter- 
ing disappear. 
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Within the limitations imposed by the noise in the 
distributions and the convolution with the square 
aperture function representing the finite size of the 
crystal, it appears that the diffuse peaks are isotropic. 
This result is consistent with calculations on a two- 
dimensional nearest-neighbour Ising model, which 
predict that the spin-spin correlations are isotropic 
(Kadanoff, 1966). That system is a spin analogue of 
the present model. 

D i s c u s s i o n  

1. The importance of  coupling 

For a model system to exhibit any disorder diffuse 
scattering it must include coupling betweon the atoms. 
A system of uncoupled atoms cannot produce any 
structure in the diffuse scattering, only a smooth 
increase in diffuse intensity with scattering angle until 
the Debye-Waller  factor takes over at high angles 
(Willis & Pryor, 1975; Cowley, 1975). It is less 
obvious, perhaps, that coupling has a significant effect 
on the MSD's. In fact, as shown below, the correct 
temperature dependence for the MSD's requires a 
model potential with explicit coupling between the 
atoms. 

Uncoupled-atom approximations to the MSD for 
systems with a structural phase transition include the 
work of Itoh (1984) and a mean-field approximation 
to the present model (Mair, 1986). The method of 
Itoh is effectively a split-atom model with provision 
for temperature dependence of the atom separa- 
tion to be related to an order parameter of the form 
tanh (C/kBT),  where C is a constant. With the MSD's 
referred to origins for the structure of the high- 
temperature phase, Itoh's formula reduces to 

(X2)HT OC kBT + cd 2, (7) 

where d is the separation of the split atoms at T > Tc 
and c is a constant. Equation (7) is just a straight line 
and so is only correct for T> Tc. 

The mean-field approximation to the MSD for the 
model in this paper (see Mair, 1986) gives a straight 
line for T ~, Tc and is still qualitatively similar to Fig. 
2 for T <  Tc, but has a downward-directed cusp in 
(XE)HT at Tc. The fully coupled model presented here 
shows that (X2)HT is smooth at all temperatures, with 
a minimum just above Tc (rather than a cusp at Tc) 
and Tc occurring at the point ofinflexion in the curve. 

(e) 

Fig. 3. The Bragg and diffuse-scattered intensities for scaled 
temperatures of (a) 0.01, (b) 0.02625, (c) 0-03125, (d) 0-06 and 
(e) 0.13, where T c = 0.029. Intensity levels were calculated on 
a logarithmic scale, with 16 grey levels, ranging from 10 -4 to 
10 -1 (so that I -< 10 -4 appears black and I -> 10 -1 appears white). 
The origin of reciprocal space is at the geometrical centre of 
each diffraction pattern. 

2. Split-atom models 

Although they are not suitable for predicting the 
temperature dependence of the MSD's, split-atom 
models are convenient for fitting Bragg diffraction 
data from phase-transforming crystals. If moments 
of the displacement no higher than the second are 
required, this fitting device appears to form a reason- 
able practical approach. However, there is no reason 
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to believe that Bragg intensities fitted with a split-atom 
model necessarily correspond to a static distribution 
of atoms about fractionally occupied sites. In the 
present model, for example, the atoms are con- 
tinuously hopping across the potential barrier for 
T> Tc and even below Tc some hopping occurs 
until the temperature is low enough for the ordering 
to be complete. Nevertheless, a split-atom model 
would give a reasonable fit to the corresponding Bragg 
scattering [see Mair (1983b), where a split-atom 
model is used to fit probability densities for a one- 
dimensional analogue of the present data]. 

A CSIRO Cyber 205 grant is gratefully acknowl- 
edged. 
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Abstract 

The X-ray intensities of almost-forbidden reflections 
301 and 303 in a single crystal of magnesium have 
been measured at 293 K. Effective monochromatiza- 
tion by appropriate electronics was utilized to 
increase the observability of these weak reflections. 
The data are interpreted in terms of atomic vibrations 
by application of a quantum-statistical one-particle 
formalism that allows anharm0nic contributions to 
the atomic temperature factor. A value of 
-0.43 ( 3 ) e V ~  -3 is obtained for the third-order 
anharmonic parameter, the negative sign being 
deduced from the coordination. This outcome is in 
accordance with earlier results concerning anhar- 
monic vibrations. 

I. Introduction 

A proper consideration of symmetry requirements 
has an important implication in diffraction studies. 

0108-7673/87/050694-05501.50 

For some simple crystal structures, in which all atoms 
are at special positions and not located at the centre 
of symmetry, the conventional special extinction rules 
may be violated. Consequently, weak 'forbidden' 
reflections - more properly termed almost-forbidden 
reflections - may occur. X-ray and neutron diffraction 
studies on the first and best known case - the  222 
reflection in diamond structures - have demonstrated 
both non-sphericity of valence-charge density and 
anharmonicity of thermal vibrations (Roberto & 
Batterman, 1970; Keating & Nunes, 1971; Bilderback 
& Colella, 1975). Recently, almost-forbidden reflec- 
tions have been observed in hexagonal close-packed 
zinc (Merisalo, J~irvinen & Kurittu, 1978) and cad- 
mium (Merisalo, Peljo & Soininen, 1978), and in 
tetragonal tin (Merisalo & J~irvinen, 1978). In all these 
studies the data were interpreted in terms of anhar- 
monicity of lattice vibrations. The most recent 
measurement on the almost-forbidden reflection 202 
of white tin (Merisalo & Soininen, 1979) revealed the 
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